Steady state analysis of signal response in receptor trafficking networks.
نویسندگان
چکیده
Receptor trafficking is used to describe the internalization and recycling processes of receptors in the cell. Considerable efforts of quantitative modeling have been made so far in the study of receptor trafficking networks. For the reason of simple mathematical analysis, the canonical receptor trafficking models either ignored the recycling step of receptors or didn't consider the trafficking of empty receptors. Here, we revisit the canonical receptor trafficking models and implement steady state analysis for a general model of receptor trafficking networks, which is composed of the de novo appearance of surface receptor, ligand-receptor interaction, internalization, recycling and degradation of both empty and occupied receptors. We present the analytical solution of the two steady states of the receptor trafficking networks before and after the network is exposed to the signal. The results indicate that the distribution of the empty receptor at the cell surface and inside of the cell, before signal is added, is mainly determined by the ratio of internalization rate and recycling rate of empty receptor. Furthermore, the steady state analysis demonstrates that classic Scatchard plot analysis is still valid for the steady state of the complicated receptor trafficking network.
منابع مشابه
Longest Path in Networks of Queues in the Steady-State
Due to the importance of longest path analysis in networks of queues, we develop an analytical method for computing the steady-state distribution function of longest path in acyclic networks of queues. We assume the network consists of a number of queuing systems and each one has either one or infinite servers. The distribution function of service time is assumed to be exponential or Erlang. Fu...
متن کاملAnalysis of Steady-State Brillouin Nonlinearity in High-Power Fiber Lasers
In the present work, a theoretical analysis of the first-order of stimulatedBrillouin scattering (SBS) in a double-clad (DC) ytterbium (Yb)-doped silica fiber laserin unidirectional pumping mode is presented.An accurate simulation for calculating SBS nonlinearity is performed by considering thecoupled differential rate equations for pump, signal and Stokes powers, as wel...
متن کاملSteady Flow Analysis and Modeling of the Gas Distribution Network Using the Electrical Analogy (RESEARCH NOTE)
The mathematical modeling of a gas network is a powerful tool in order to identify the behavior of system under the different conditions. The modeling can be performed both for the steady state and unsteady state conditions. It is possible to use the fluid flow basic governing equations or the electrical analogy concept for developing the model. The second approach provides a simpler and more r...
متن کاملSteady State Analysis of Nanofuel Droplet Evaporation
The potential for nanofuels as one of the clean sources of energy on account of its enhanced combustion performance coupled with low emissions has been established. Considering the importance of the fuel evaporation phase in the entire combustion process, this work presents an attempt at applying the steady state analysis equations to nanofuel experimental data obtained from the li...
متن کاملA FAST MESH-FREE GALERKIN METHOD FOR THE ANALYSIS OF STEADY-STATE HEAT TRANSFER
The element-free Galerkin method is employed for two-dimensional analysis of steady-state heat transfer. The unknown response of the system, i.e. temperature is approximated using the moving least squares technique. Numerical integration of governing simultaneous system of equations is performed by Gauss quadrature and new modified nodal integration techniques. Numerical examples and tests have...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genome informatics. International Conference on Genome Informatics
دوره 18 شماره
صفحات -
تاریخ انتشار 2007